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PHOENIX core components and foster communications resilience, the 
platform deployment of PHOENIX follows the cloud native paradigm with the 
adoption of container-based operation and container orchestration processes. 
The SPC Layer offers security over legacy protocols currently used in EPES 
infrastructures as well as data persistency by adopting a data-centric approach 
based on federated Distributed Ledger Technologies to achieve a higher 
degree of persistency, traceability, availability, integrity, and interoperability 
in the context of data communications. Furthermore, several “by-design” 
options to increase the resilience of EPES systems have been investigated. This 
deliverable provides the second version of the SPC Layer description whereas 
the final update will be given in D2.4: Secure and Persistent Communications 
Layer (Ver. 2). 
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Executive Summary  
PHOENIX focuses on the protection of European Electrical Power and Energy System (EPES) assets and 
networks against cyber-attacks. The Secure and Persistent Communications (SPC) Layer is one of the key 
components to achieve this goal, enabling coordinated cybersecurity measures and the secure exchange 
of Cyber Threat Intelligence (CTI), at the same time ensuring privacy. An initial description of the SPC 
Layer was given in deliverable D2.1: PHOENIX platform architecture specification [1] as part of the 
PHOENIX architecture description and was refined and expanded by the requirements of the SPC Layer 
in deliverable D2.2: Secure and Persistent Communications Layer (Ver. 0) [2]. This deliverable provides 
an update to D2.2. 

The application of semantics and ontologies to the PHOENIX environment is a key concern for the SPC 
Layer. The approach adopted in the project is built on the utilization of standard protocols for cyber 
threat intelligence protocols and services. Furthermore, ledger-specific adapters ensure compatibility 
with the federated ledger and Interledger (IL) approach of PHOENIX. 

To increase the availability and reliability of the PHOENIX core components and foster communications 
resilience, the platform deployment of PHOENIX follows the cloud native paradigm with the adoption of 
mostly stateless, container-based operation and relevant container orchestration processes. 
Consequently, following the cloud native paradigm, Cloud Native Applications and Service Mesh for 5G 
communication have been explored for the PHOENIX environment. 

In the PHOENIX platform, the SPC Layer offers security over the legacy protocols that are currently used 
in EPES infrastructures as well as data persistency. The SPC Layer adopts a data-centric approach based 
on federated Distributed Ledger Technologies (DLT) to achieve a higher degree of persistency, 
traceability, availability, integrity, and interoperability in the context of data communications. Beyond 
usage of DLTs within the SPC Layer, different components of the PHOENIX platform can also leverage 
the use of DLT as a persistent and immutable data storage. Towards enabling the utilization of multiple 
ledgers simultaneously within the PHOENIX platform, a distributed and resilient solution for 
interconnecting varying ledger networks has been designed and implemented, which is also suitable for 
critical Electrical Power and Energy System assets and data. The current implementation of the 
Interledger component enables connections between various Distributed Ledger Technologies and can 
be easily extended to support other ledger networks. This document specifies the interfaces and services 
as well as internal architecture. 

Leveraging on the above activities, the SPC Layer provides secure federated communications among 
PHOENIX components at the level of Large-Scale Pilots as well as between those components and the 
Incident Information Sharing Platfom. The exchange of Cyber Threat Information is handled by the TAXII 
servers, while the proposed Interledger solution offers data persistency.  Furthermore, the SPC Layer 
leverages on the Universal Secure Gateway (USG) to provide secure information and data exchange. USG 
provides several Cyber Threat Intelligence services, including anomaly detection on the communication 
network, and exchanges such information with the components of the PHOENIX platform. 
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Furthermore, “by-design” measures to increase the resilience of the cyber-physical power system have 
been investigated. The proposed Resilience Enhancement Methodology aims to ensure the availability 
of automation functions required for the power system operation, based on the Double Virtualization 
(DV) approach. A use case related to PHOENIX LSP1 and, specifically, threat scenario ASM_SCADA_RTU, 
is defined and described in this deliverable. The Resilience Enhancement Methodology implementation 
includes two main parts, the functions and data layer, which is specific to the use case; and DV, which 
offers the framework for virtualization and distribution of the relevant functions. A laboratory set-up is 
defined to evaluate the Resilience Enhancement Methodology implementation. An initial evaluation 
scenario is defined and evaluation criteria are specified, including functionality and performance aspects. 
Finally, an outlook on planned improvements and refinements of the implementation is given. 

This deliverable provides the second version of the SPC Layer description. The final update will be given 
in D2.4: Secure and Persistent Communications Layer (Ver. 2). 
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1. Introduction 
The SPC layer is one of the key components to protect EPES assets and networks against cyber-attacks, 
enabling coordinated cybersecurity measures and the secure exchange of CTI. An initial description of 
the SPC Layer was given in D2.1: PHOENIX platform architecture specification [1] as part of the PHOENIX 
architecture description and was refined and expanded by the requirements of the SPC Layer in D2.2: 
Secure and Persistent Communications Layer (Ver. 0) [2]. This deliverable provides an update to D2.2. 

The document is structured as follows: 

This chapter provides a brief overview on the objectives of the PHOENIX project, the present deliverable 
and on the structure of the document. Chapter 2 describes the application of semantics and ontologies 
to the PHOENIX environment, specifically the TAXII 2.1 framework. The approach to transactions and 
communication is laid out in chapter 3. Chapter 3.2 describes the approach to federated ledger and 
Interledger in the SPC Layer, whereas chapter 5 specifies the initial communication platform. The 
Resilience Enhancement Methodology to implement resilience by design is presented in chapter 6 and 
results of the related simulation studies are included in chapter 7. The details of the PHOENIX 
implementation are included in deliverables describing the “PHOENIX integrated platform and SPaaS 
Core Services”, considering the classification level of this information. The initial version has been 
provided in D6.1: PHOENIX Integration guidelines and integrated platform (Ver. 0) [3] whereas an update 
to the PHOENIX architecture will be given in D6.2: PHOENIX Integration guidelines and integrated 
platform (Ver. 1). 
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2. Semantics and Ontologies – Application to 
the PHOENIX environment 

This chapter describes the application of semantics and ontologies to the PHOENIX environment, which 
is built on the utilization of Trusted Automated Exchange of Intelligence Information (TAXII) v2.1 and 
Structured Threat Information eXpression (STIX). TAXII is designed to exchange CTI over HTTPS. It enables 
organizations to share CTI by defining an Application Programming Interface (API) that aligns with 
common sharing models. TAXII is specifically designed to support the exchange of STIX-formatted CTI 
data. 

2.1. TAXII Server 
SPC Layer is designed to support the secure exchange of different types of information among the various 
components. Thereby, a TAXII 2.1 server resides in the SPC Layer to exchange TAXII messages within the 
PHOENIX platform.  

2.1.1. PHOENIX Pub/Sub Enhancements in TAXII Server 
The TAXII protocol v2.1 considers the exchange of CTI information among TAXII Clients in a 
publish/subscribe mode via the TAXII “Channels” concept, as depicted in Figure 1. A TAXII Server 
maintains a TAXII Channel under an API root of the TAXII Server. For example, a single TAXII Server could 
host multiple API roots - one API root for Channels used by Sharing Group A and another API root for 
Collections and Channels used by Sharing Group B. Each API root contains a set of endpoints that a TAXII 
Client contacts in order to interact with the TAXII Server.  

The protocol also specifies that TAXII Clients, which produce CTI, can publish messages to Channels and 
subscribe to Channels to receive published messages as CTI consumers. However, the protocol does not 
provide technical specifications of the TAXII Channels. The relevant section of the protocol specification 
[4] is empty and marked as “reserved” at the time of writing this deliverable. 

 

Figure 1: TAXII Channels for CTI exchange in a publish/subscribe manner [5] 
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In PHOENIX, the TAXII server will be based on Medallion [6], a minimal reference implementation of 
TAXII 2.1 Server in Python, which is an OASIS TC Open Repository, meaning that all contributions are 
subject to open source license terms expressed in the BSD-3-Clause License [7].  Medallion has been 
designed as a simple front-end REST server providing access to the endpoints defined in TAXII 2.1 
specification. However, it does not incorporate any publish/subscribe mechanism.  

Nevertheless, the publish/subscribe mechanism is critical for the PHOENIX TAXII Server, which will 
undertake the task of handling CTI exchange from PHOENIX components generating CTI towards the DLT 
of the SPC Layer. Thereby, it can establish secure federated communications among Large-Scale Pilot 
level PHOENIX components and between those components and Incident Information Sharing Platform 
(I2SP). Furthermore, this publish/subscribe mechanism perfectly suits the real-time notification 
objective of the PHOENIX project as it allows instantaneous, push-based delivery, eliminating the need 
for message consumers to periodically “poll” for new information and updates. This promotes faster 
response time and reduces the delivery latency that can be particularly problematic in critical energy 
systems where delays cannot be tolerated 

To support this communication, the PHOENIX Consortium has developed a new middleware with 
interfaces for supporting multiple types of publish/subscribe or streaming technologies. Specifically, 
reference implementation is available for RabbitMQ [8], whereas Apache Kafka [9] is also planned to be 
added. Then, using the adopted PHOENIX channels approach, all PHOENIX components can subscribe to 
relevant topics such as Events, Attacks and Mitigations, and thus get notified on their desired topics, 
following the flow depicted in Figure 2. 

 

Figure 2: The publish/subscribe exchange mechanism in PHOENIX. 

It must be noted that the TAXII server will also handle the authentication, authorization, and policy-
based message handling, backed by the Keycloak server, implemented in the context of Accountability 
& Access Management (AAM) service of PHOENIX and detailed in deliverable D6.1: PHOENIX Integration 
guidelines and integrated platform (Ver. 0) [3]. 
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2.1.2. TAXII Server in the SPC Layer 
The SPC Layer, as it is reflected in its name, is designed to persist CTI data that is exchanged between 
different PHOENIX components. As stated in the previous paragraphs, the TAXII server handles these 
persistence operations by storing STIX data and metadata in its backend (normally a MongoDB instance 
[10]). However, this mechanism does not guarantee the correctness of STIX records maintained by TAXII 
server. To address this need, SPC utilizes DLTs, which are widely known as immutable data storages. DLTs 
enable the SPC Layer to assure the integrity of CTI data stored in the TAXII backend. To this end, the TAXII 
server follows the below procedure which is also presented in Figure 3.   

 

Figure 3: Sequence diagram for the write operation of TAXII data on TAXII server and SPC ledger. 

1. The TAXII server’s front-end upon reception of a POST request which is formatted in a TAXII 
message and carries STIX objects such as detected attacks generated by a producer, writes the 
TAXII data and metadata in the MongoDB backend. 

2. At the same time, it triggers writing the hash of every STIX object which was encoded in the TAXII 
message in SPC’s DLTs with the purpose of the data integrity enhancement. To achieve this, 
ledger-specific adapters are added to the basic TAXII server. These adapters allow the TAXII server 
to trigger transactions on different types of ledger. More precisely, ledger-specific adapters 
provide interfaces to the pre-defined smart contracts on SPC’s DLTs. Consequently, the TAXII 
server can simply invoke functions on the target ledger. For the time being, the TAXII server 
includes adapters only for ConsenSys Quorum [11] and Hyperledger Fabric [12] ledgers, however, 
supports for other ledger types can be easily added by following the same principles. As stated 
above, only the hash of STIX objects are stored in ledgers. The rationale behind this decision is 
that the STIX objects generated by PHOENIX components might contain explicit or implicit 
personal data. Storing them in ledgers would lead to violation of the General Data Protection 
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Regulation (GDPR) right to be forgotten due to the immutable nature of DLTs. Thereby, the TAXII 
server utilizes MD5 hash function, which is a one-way function, and in practice infeasible to invert 
for generating hash of STIX objects. 

3. After completion of the write operation on database, the MongoDB backend returns the 
operation status to the TAXII front-end. 

4. The TAXII front-end creates a status resource to report back the request status provided by the 
backend to the client. The status resource contains the status of every STIX objects within the 
POST request and specifies whether the writing operation related to each object is still pending, 
successfully completed or failed. Next, the TAXII front-end persists the status resource in the 
MongoDB backend. 

5. Since the duration of writing data on ledgers are highly variable and depends upon several factors 
such as the network condition, the TAXII front-end replies the POST request immediately after 
storing the status of the write operation in the backend. It is noteworthy that during this phase 
of the operation, the TAXII server sets the status of each individual object to either pending in 
case it is successfully written to the backend, or failure if the write operation has failed for any 
reason.  

6. The TAXII v2.1 does not define the methods and data formats for the publish-subscribe 
communication despite the fact it has been promised in the standard specification. Therefore, 
the PHOENIX platform develops a separate module (i.e., pub-sub module) to fulfil this 
requirement which is thoroughly described in the following section. The TAXII server after 
sending the POST response, passes the TAXII data to the pub-sub module. 

7.  After finalizing publishing data on the SPC’s ledger, the status of STIX object in the backend is 
modified accordingly. More accurately, the status is set to either success if the write operation in 
the ledger was successful or failure in case of unsuccessful attempt to write the data. 
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8. The TAXII client can later inquiry about the status of each STIX object using a separate TAXII 
message (i.e. GET status request). In this manner, the client can verify that the TAXII data and 
related metadata is successfully written in both MongoDB and SPC’s ledger. 

In the PHOENIX platform, the majority of PHOENIX components receive the published CTI data through 
the channels dedicated to different types of STIX object. However, some components such as the 
Security Control Centre (SCC) dashboard follow the request-response communication paradigm for 
obtaining CTI data. To this end, they send a TAXII message carrying a GET request directly to the TAXII 
server. For instance, the SCC dashboard first collects IDs of the published STIX objects from the 
Configuration Maintenance Service (CMS) and then queries the related objects from the TAXII server. To 
handle GET requests, the TAXII server takes following steps as illustrated in Figure 4: 

1. Upon reception of a GET request which is encapsulated in a TAXII message, the TAXII front-end 
retrieves the queried STIX objects from the MongoDB backend. 

2. Simultaneously, the TAXII front-end triggers reading of the hash of the related STIX object from 
SPC’s ledger through the corresponding ledger-specific adapter. 

3. Like the write operation, the waiting time for completing the read operation in DLTs is variable. 
Hence, the TAXII front-end immediately replies to the GET request when the backend sends back 
the queried STIX objects. 

4. When the front-end receives the hash of the object from SPC’s ledger, it compares it with the 
hash of the actual STIX object provided by the backend. The identical hashes imply that the STIX 
record on the backend is valid while any discrepancy in the hashes indicates some alteration in 
the data record. In the latter case, the front-end notifies the backend about the discrepancy and 
subsequently the backend labels the STIX record as an invalid entry. It is noteworthy that the 
front-end rejects any GET request for the invalid STIX object. Thereby, this procedure can detect 

Figure 4: Sequence diagram for reading TAXII data from the TAXII server and SPC ledger. 
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any malicious behaviours aimed at modifying STIX records in the MongoDB backend, which 
results in a higher degree of data integrity.   

2.1.3. Authentication on TAXII Server 
As already mentioned, authorization in the TAXII server uses Keycloak, a central Authorization, 
Authentication, Accounting (AAA) OAuth2 service. To access the server for read or write operations, the 
user must have access to an account with access to the "taxii-read" and "taxii-write" scopes respectively. 
The TAXII server can be configured on deployment to use the correct Keycloak instance and details (URL, 
client id, client secret, realm). When making an HTTP request to the server, the client must provide 
authorization credentials in one of two ways: 

1. Using a valid JSON web token obtained independently from the Keycloak instance, that provides 
access to the correct scopes as mentioned above. The token is sent in the “Authorization” header 
with the prefix “Token” and validated in the TAXII server. 

2. Using basic authentication, as per the TAXII protocol. In this case, the TAXII server uses the 
credentials to obtain authorization from Keycloak on behalf of the client, using the OAuth2 
password flow. Basic authorization is defined in RFC 7617 [13]. 

2.1.4. Ledger-specific adapter for TAXII Server   
As described in section 2.1, the TAXII server communicates with SPC’s ledgers via ledger-specific 
adapters. These adapters provide interfaces toward different ledger types. To this end, each adapter first 
setups a connection between the TAXII server and corresponding ledger type. After that, for the write 
operation, it triggers a transaction by invoking the pre-defined function (i.e., emitData) from the 
configured smart contracts on the ledger. Every function call on an SPC ledger, which also carries the 
hash of the STIX object as an input, is persisted in the ledger. For the read operation, the adapter uses 
the transaction IDs to retrieve the STIX object hashes from the ledger, which will be further examined 
against the hashes of the STIX records in the TAXII backend. 

2.2. TAXII Client 
Many components within the PHOENIX platform, such as Situation Awareness, Perception & 
Comprehension (SAPC) and Incident Mitigation & Enforcement Countermeasures (IMEC), produce 
substantial amount of CTI data, which need to be shared with other PHOENIX services and components. 
To achieve this goal, the PHOENIX components and services regardless of their roles, which might be 
either CTI producer, consumer, or both, must feature a TAXII client that is a minimal client 
implementation for the TAXII 2.1 server specification. In the PHOENIX setup, the TAXII server is mainly 
utilized for CTI data exchange between clients. For this purpose, it maintains a repository of CTI objects 
provided by CTI producers and replies to consumer queries. The TAXII 2.1 server implementation and 
related functionalities are extensively discussed in the following section.  
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3. Transaction and Communication 
This chapter describes the approach to deployment of the PHOENIX components based on the federated 
cloud and investigates Cloud Native Applications for 5G communications. 

3.1. Cloud Native for 5G communications  
In this section, we provide a background around the Cloud Native Applications, microservices, service 
mesh, with modelling 5G cloud-native applications by exploiting the service mesh paradigm. The 
PHOENIX project can benefit from the service mesh approach to strengthen its security by design. In the 
current document, we give a general overview of the service mesh, and we will provide more detailed 
implementation specific to PHOENIX in the next deliverable.  

3.1.1. Cloud Native Paradigm 
Referring to the definition of Cloud Native Application (CNA) in [14], it is a distributed, elastic, and 
horizontal scalable system composed of (micro) services, which isolates states in a minimum of stateful 
components. The application and each self-contained deployment unit of that application is designed 
according to cloud-focused design patterns and operated on a self-service elastic platform.  

Based on this definition, we provide the description of the main concepts proposed or defined by 
standardizing initiatives or other research works: 

• Elasticity has been defined by [15] as the degree to which a system is able to adapt to workload 
changes by provisioning and de-provisioning resources in an autonomic manner, such that at 
each point in time the available resources match the current demand as closely as possible.  

• Scalability [16] can be differentiated to structural scalability and load scalability. Structural 
scalability refers to the ability of a system to expand in a chosen dimension without major 
modifications to its architecture. Load scalability is the ability of a system to perform gracefully 
as the offered traffic increases. 

• A microservices-oriented architecture represents a way to develop a single application as an 
amalgamation of small, independent services, each running in its own process and 
communicating with lightweight mechanisms, often a Hypertext Transfer Protocol (HTTP) 
resource API. These services are built around business capabilities and independently deployable 
by fully automated deployment machinery [17]. Another description of the microservice is that 
it has two functions: 1) Business Logic, which implements the business functionalities, 
computations, and service composition/integration logic, and 2) Network Functions, which take 
care of the inter-service communication mechanisms (e.g., basic service invocation through a 
given protocol, apply resiliency and stability patterns, service discovery, etc.).  

• A self-contained deployment unit is described as a part of the application’s deployment topology 
for realizing a specific technical unit [18]. More and more often, a deployment unit is understood 
as a standard container. A standard container encapsulates a software component and all its 
dependencies in a format that is portable, so that any compliant runtime can run it without extra 
dependencies, regardless of the underlying machine and the contents of the container.  
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• Stateful components are used for multiple instances of a scaled-out application component to 
synchronize their internal state to provide a unified behaviour [19].  

• Elastic platform is understood as a middleware for the execution of custom applications, their 
communication, and data storage is offered via a self-service interface over a network [19]. 

Another related concept for managing microservices are the service mesh services. We give a brief 
description, with its main components, and example of research based on 5G-ready applications.  

3.1.2. Service Mesh  
A Service Mesh [20] is a dedicated infrastructure layer with a set of deployed infrastructure functions 
that facilitate service-to-service communication through service discovery, routing and internal load 
balancing, traffic configuration, encryption, authentication, authorization, metrics, and monitoring. It 
provides the capability to define network behaviour, microservice instance identity, and traffic flow 
through policy in an environment of changing network topology due to service instances coming and 
going offline and continuously being relocated [21].  

The Service Mesh can be defined also as a distributed computing middleware that optimizes 
communications between application services.  The service-to-service communication is enabled using 
a proxy. A Service Mesh is implemented as an array of lightweight network proxies that are deployed 
alongside application code. In addition, the Service Mesh can be leveraged to monitor and secure 
communication: The Service Mesh can learn and smartly route traffic.  

3.1.3. Service Mesh Components & Capabilities  
A Service Mesh consists of two main architectural layers or components [22]:  

• Data plane: The interconnected set of proxies in a Service Mesh that control the inter-services 
communication represents its data plane. The data plane is the data path and provides the ability 
to forward requests from the applications. The specialized proxy that is created for each service 
instance (i.e., sidecar proxy) performs the runtime operations needed for enforcing security (e.g., 
access control, communication-related), which are enabled by injecting policies (e.g., access 
control policies) into the proxy from the control plane. A data plane may provide more 
sophisticated features like load balancing, authentication, and authorization. 

• Control plane: A control plane is a set of APIs and tools used to control and configure data plane 
(proxy) behaviour across the mesh. The control plane is where users specify authentication 
policies and naming information. The intelligence and data required for implementing all security 
functions lie in the control plane. These include the software for generating authentication 
certificates and the repository for storing those, policies for authentication, authorization engine, 
software for receiving monitoring data regarding each microservice and aggregating them.  

 As part of the process of providing the communication, the following capabilities are supported:  

• Secure communication – Mutual Transport Layer Security (TLS), encryption, dynamic route 
generation, multiple protocol support, including protocol translation where required (e.g., 
HTTP1.x, HTTP2, gRPC, etc.). 
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• Authentication and authorization – Certificate generation, API keys, key management, whitelist, 
and blacklist, Single Sign-On (SSO) tokens. 

• Secure service discovery – Discovery of service endpoints through a dedicated service registry 

• Resilience/stability features for communication – fault injection/handling, load balancing, 
failover, rate limiting, request shadowing. 

• Observability/monitoring features – Logging, metrics, distributed tracing. 

Ingress Controller  
The service proxy of a Service Mesh can be deployed for control of ingress traffic (i.e., external traffic 
coming into microservices application as opposed to microservice-to-microservice communication). It 
realizes the functions of an API gateway. The main ingress controller functionalities are:  

• A common API for all clients shielding the actual API inside the Service Mesh. 

• Composition of results received from calls to multiple services inside the Service Mesh in 
response to a single call from the client. 

• Load balancing. 

• Public TLS termination. 

Egress Controller  
The service proxy of a Service Mesh can be deployed for control of egress traffic (i.e., internal traffic 
coming from microservices destined for microservices outside of the mesh). Conceptually, the egress 
controller can be looked upon as a sidecar proxy for one or more external servers.  

The egress proxy provides the following functions:  

• Protocol translation from microservice-friendly protocols (e.g., RPC/gRPC/REST) to web-friendly 
protocols (e.g., HTTP/HTTPS). 

• Credential exchange: Translate from internal (mesh) identity credentials to external credentials 
(e.g., SSO tokens or API keys) without the application directly accessing the external system’s 
credentials.  

• A single set of workloads (e.g., hosts, IP addresses) to whitelist for communication to external 
networks (e.g., firewalls can be configured to allow only egress proxies to forward traffic out of 
the local network). 

Various research and industrial efforts have emerged to deploy 5G-ready application with service mesh. 
In particular, in [23] the authors propose a 5G-ready application consisting of cloud-native components 
that rely on a service mesh infrastructure as a mean of network abstraction. The service mesh operates 
on top of a programmable 5G environment. To exploit the service mesh added-value, a 5G full-stack 
architecture must be used in [24] , which relies on a solid interplay between various logical layers such 
as the actual data plane, the service mesh control plane, and the configured virtualized resources that 
are offered by the telco provider as a proper slice.  
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3.2. Deployment based on the (federated) cloud  
In an attempt to increase the availability and reliability of the PHOENIX core components and foster 
communications resilience, the platform deployment of PHOENIX follows the cloud native paradigm with 
the adoption of container-based operation (all components operate in the form of Docker containers) 
and relevant container orchestration processes, Kubernetes in particular (see [25], [26] and [3] for details 
and discussion). Figure 5 highlights the Kubernetes-based deployment architecture adopted to support 
the component deployments. 

 

Figure 5: Generic Kubernetes concepts architecture used in PHOENIX. 

Indeed, we consider that a PHOENIX cluster consists of several nodes, hosting a number of namespaces; 
typically, each set of components (SPC, SAPC, Privacy Protection Enforcement (PPE) etc) belongs to the 
same namespace and consisting of a set of services, bundled under the scope of Kubernetes deployments 
or stateful sets (see [25] for details on the specific Kubernetes resources definitions). Accordingly, the 
services are typically broken down in pods, each pod holding a running (Docker) container. Figure 6, 
below, showcases the deployment and contained pods relevant to the SPC DLT plane whereas Figure 7 
depicts the pods relevant to the PHOENIX-adapted TAXII server.  

$ kubectl -n spc get deployments 

NAME                      READY   UP-TO-DATE   AVAILABLE   AGE 

quorum-node1-deployment   1/1     1            1           31d 

quorum-node2-deployment   1/1     1            1           31d 

quorum-node3-deployment   1/1     1            1           31d 
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$ kubectl -n spc get pods 

NAME                                       READY   STATUS             RESTARTS   AGE 

quorum-node1-deployment-6ff7f75546-n9njk   2/2     Running            1          7d1h 

quorum-node2-deployment-6cfd544b44-kj7tl   2/2     Running            1          102m 

quorum-node3-deployment-64f7fd97b9-pqt8h   2/2     Running            1          7d1h 

Figure 6: Structure of the SPC DLT components (deployments and pods) under the SPC namespace of 
Kubernetes. 

$ kubectl -n phoenix get pods 

NAME                                READY   STATUS    RESTARTS   AGE 

medallion-f4f745f59-87fv7           1/1     Running   0          7d7h 

medallion-worker-5d7f458cb7-zfr9c   1/1     Running   10         10d 

mongodb-9bcd68959-97vsv             1/1     Running   2          32d 

rabbitmq-0                          1/1     Running   2          67d 

Figure 7: Structure of the Kubernetes pods regarding the TAXII-related components. 

It is worth mentioning that, apart from the standard methods for increasing availability (e.g. with the 
introduction of replica sets – an approach readily adopted by the project Kubernetes deployments) and 
in order to further foster the increased availability perspective of PHOENIX at the level of both service 
and data provisioning, cloud-native storage solutions have also been sought with the adoption of the 
Rook framework [27] [28] in combination with the CEPH storage backend [29], as shown in Figure 8. 

$ kubectl -n rook-ceph get pods 

NAME                                            READY   STATUS      RESTARTS   AGE 

csi-cephfsplugin-provisioner-5c65b94c8d-bn988   6/6     Running     83         165d 

csi-cephfsplugin-vklr5                          3/3     Running     30         165d 

csi-rbdplugin-provisioner-569c75558-k4t6c       6/6     Running     82         165d 

csi-rbdplugin-qq5kc                             3/3     Running     30         165d 

rook-ceph-mgr-a-55467b4f7-87tx7                 1/1     Running     9          165d 

rook-ceph-mon-a-77dd5dfb66-lcljk                1/1     Running     9          165d 

rook-ceph-operator-69d45cb679-5fjcd             1/1     Running     9          165d 

rook-ceph-osd-0-57cd6975cb-5cqm4                1/1     Running     9          165d 

rook-ceph-osd-prepare-compute-r540-1-7zp6l      0/1     Completed   0          7d9h 

rook-discover-7ntnq                             1/1     Running     9          165d 

Figure 8: Kubernetes pods governing the cloud-storage configuration of PHOENIX. 
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4. Federated ledger & Interledger on SPC Layer  
This chapter provides an overview of DLT and Interledger solutions and the solution adopted in PHOENIX 
for interoperability of different ledgers as a persistent and immutable data storage. 

4.1. Distributed Ledger Technologies and Interledger solutions 
Many application scenarios utilize DLTs, mainly as immutable data storages [30]. However, the 
immutability of data highly depends upon the consensus mechanisms used by a DLT. For instance, public 
ledgers often use Proof-of-Work (PoW) as the consensus algorithm (e.g., Bitcoin [31]) which makes 
modification of the stored data substantially hard, at the expense, though, of longer processing time and 
higher energy consumption. On the contrary, private permissioned ledgers commonly utilize less 
complex consensus mechanisms such as Proof-of-Authority (PoA), a practice that results in lower level 
of trust [32]. In recent years, several Interledger solutions have been proposed to combine the strengths 
of different ledgers while combating their shortcomings at the same time. 

In [33], authors studied a wide range of Interledger approaches and eventually categorized them into six 
groups based on various metrics including value transfer/exchange, cost, trustworthiness, scalability, 
and privacy. These categories are as follows:  

1. atomic cross-chain transactions, mainly devised for exchanging digital assets among ledgers [34],   
2. transactions across a network of payment channels which performs off-chain trading of assets 

[35],  
3. the W3C Interledger Protocol (ILP) which provides a more generic form of the previous category 

for transferring funds among DTLs [36],  
4. bridging which facilitates bidirectional data/value transfer among DLTs [37],  
5. sidechains that are designed to enhance the overall throughput and trust of Interledger 

communication by moving some of the transactions to other ledgers (so called sidechains) [38], 
and  

6. ledger-of-ledgers, which utilizes a designated ledger to harmonize multiple sidechains [39]. 

The Interledger solutions benefit from hash-locks to guarantee the atomicity of cross-ledger operations. 
To this end, cryptographic locks are utilized to lock digital assets. On the other hand, for unlocking the 
assets, a secret that is used to generate hash-locks in first place, needs to be revealed. Consequently, 
this mechanism ensures that all transactions on all involved ledgers either succeed or fail. However, it is 
possible that a secret may fail to be revealed and thereby assets remain locked. To counteract this 
problem, hash-locks are typically accompanied with time-locks (i.e., also known as Hashed Time Locked 
Contracts (HTLCs)) which allow the locked assets to be released after a certain time interval [40].  
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4.2. Interledger solution 
The SPC Layer adopts a data-centric approach based on federated DLTs to achieve a higher degree of 
persistency, traceability, availability, integrity, and interoperability in the context of data 
communications. As stated above, different ledger technologies meet various needs. For instance, the 
ledgers aimed for asset and access control management are preferably chosen from permissioned 
ledgers with the purpose of achieving cost reduction whereas public ledgers are widely used for trade 
and making payments due to their high level of trustworthiness. Therefore, beyond usage of DLTs within 
SPC Layer, different components of the PHOENIX platform can also leverage the use of DLT as a persistent 
and immutable data storage. 

Concerning utilization of multiple ledgers simultaneously within the PHOENIX platform, it is imperative 
to develop a distributed and resilient solution for interconnecting varying ledger networks, which are 
also suitable for critical EPES assets and data. For enabling interactions among differing DLTs, several 
Interledger approaches, that some of them are discussed in the previous section, were developed [33] 
[41]. The SPC Layer benefits from the Interledger (IL) component, which is implemented on basis of 
protocol bridging. More precisely, the IL component triggers transactions on multiple ledgers (so-called 
Responder ledgers) when it receives an event from one ledger (so-called Initiator ledger). It is 
noteworthy that all cross-ledger operations performed by IL are atomic. The implementation of the 
PHOENIX IL component, which is built on top of the SOFIE IL module [42, 43, 44, 45] enables connection 
between various DLTs including Quorum, Hyperledger Fabric, Hyperledger Indy, Ethereum and KSI. 
However, IL can be easily extended to support other ledger networks. 

The inter-ledger component facilitates the integration of multiple ledgers, which results in cohesive 
storage platforms where different types of the ledgers can be used simultaneously to benefit from the 
strengths of every ledger and overcome its downsides. For better understanding, let us consider the I2SP 
component in PHOENIX platform, which is aimed to bridge the gap between national and global 
Computer Emergency Response Team (CERTs) and different EPES operators. I2SP would be instantiated 
as a distributed platform comprising one or more ledgers where each stakeholder can establish 
agreements and share CTI, such as cyber-attacks, with others reliably and transparently through the IL 
component. 

In the PHOENIX platform, the IL component can be utilized for following application scenarios: 

• Storing Data Hashes. Writing complete set of data records on a public ledger is relatively 
expensive and time-consuming process due to its demanding consensus mechanism. Thereby, 
typically the full data blocks are stored in a private ledger while a public ledger stores only a hash 
of the data to assure the higher level of trust. 

• Transferring Data among different ledger types. 

• Exchanging Digital assets. To achieve this, IL benefits from HTLCs to automate the process of 
trading value between DLTs. 

Every PHOENIX component depending on its requirements, may utilize different ledger types. As 
discussed in deliverable D2.2 [2], information (e.g., CTI) generated within PHOENIX platform cannot be 
shared with everyone, especially ledger nodes outside the LSP premises. Therefore, only private 
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permissioned ledgers such as Quorum and Hyperledger Fabric where only certain nodes are authorized 
to execute varying transactions on data blocks are used by PHOENIX components. As shown in Figure 9, 
each component (I2SP, TAXII server and Privacy Protection Enforcement (PPE)) can directly access 
corresponding DLT while the IL component enables connections to other ledgers. In other words, multi-
ledger operations are only executed through IL.  

 

Figure 9: Relationship between PHOENIX components and DLTs. 

4.2.1. Interfaces and Services 
The IL component for every cross-ledger operation instantiates a unidirectional connection between an 
Initiator ledger and multiple Responder ledgers. Thereby, for enabling two-way communication between 
ledgers, IL requires two instances of unidirectional connection. It is worth mentioning that the current IL 
implementation supports exactly one Initiator ledger, however, it is plausible for a respective PHOENIX 
component to overcome this limitation through other approaches (e.g., smart contracts). 

 

Figure 10: The Interledger component workflow [46]. 
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Figure 10 demonstrates how the IL component implements the bridging protocol. Each PHOENIX 
component that is interested in executing an operation on other ledgers rather than respective DLT 
needs to deploy a specific Smart Contract (SC) that includes the Sender and Receiver interfaces. The 
interfaces would be chosen according to the role, which the component is playing throughout the 
operation (i.e., either Initiator, Responder, or both). Table 1 briefly describes the Sender and Receiver 
interfaces in the Initiator and the Responder ledger, respectively. Next, the IL component configures a 
connection between target ledgers and starts listening for InterledgerEventSending events from the 
configured Initiator ledger SC. When a specified event is emitted (step 1), the IL component triggers a 
transaction carrying the received information on the Responder ledger by invoking the 
interledgerReceive function (step 2). On the Responder ledger, the configured SC indicates the 
transaction status through emitting either an InterledgerEventAccept event or an InterledgerEventReject 
event (step 3). At the final stage (step 4), IL notifies the Initiator ledger SC about the status of the data 
transfer by calling relevant functions (i.e., InterledgerCommit in case of an InterledgerEventAccept event 
and InterledgerAbort upon reception of an InterledgerEventReject event). 

Table 1: Interledger interfaces [46]. 

Interface Details 

Name Sender Interface 

Description Used by the configured Initiator ledger SC to trigger cross-ledger operations 

Input Data aimed to transfer/value aimed to exchange 

Output Status of transaction (i.e., success/failure) 

Name Receiver Interface 

Description Used by the configured Responder ledger to process the cross-ledger operations 

Input Data aimed to transfer/value aimed to exchange 

Output Status of transaction (i.e., success/failure) 

 

The InterledgerEventSending events emitted from the configured Initiator ledger SC apart from the 
actual data, carries an id variable. The IL component benefits from this id to internally map a certain 
event to the triggered transaction; however, IL does not share the id with the Responder ledger SC. 
Therefore, the id parameter is not necessarily unique and can be utilized to categorize a certain type of 
activities on the Initiator ledger while preserving the privacy of the Initiator ledger. In step 2, for every 
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function invocation on the Responder ledger SC, IL generates a nonce that is used in later steps (i.e., step 
4) to make a mapping between the transaction triggered on the Responder application and the event 
from the Initiator ledger. More accurately, this variable enables IL to send back the status of the 
transaction to the correct Initiator application. It is noteworthy that Figure 10 details the workflow of 
the IL component for Quorum ledger types, however, there may be slight differences in the overall 
workflow of IL based upon communicating ledger types. For instance, Hyperledger Fabric ledgers use 
chaincodes instead of smart contracts. Thereby, IL adds supports for different DLTs through ledger-
specific adapters.  

4.2.2. Internal Architecture 
Figure 11 presents the overall architecture of the IL component. As shown in Figure 11, the IL component 
is divided into two main parts: 1) the ledger-specific adapters that allow certain types of DLT to run 
applications as either Initiator ledger, Responder ledger or both, and 2) the IL Core, which tracks the 
status of ongoing transactions and exchange transaction specific parameters between Initiator and 
Responder adapters. However, the adapters can be extended to support processing of the data variable 
transferring between Initiator and Responder applications, but the IL core has not envisioned to support 
any operation on the data.  The current IL component implements Quorum and Hyperledger Fabric 
adapters for both Initiator and Responder roles.  

 

Figure 11: Interledger component architecture [46]. 

The IL component instantiates a unidirectional connection between ledgers in two modes: 1) one-to-one 
mode where one Initiator application communicates with only one Responder application, and 2) multi-
ledger mode where one Initiator ledger connects with multiple Responder ledgers. The multi-ledger 
mode handles transactions in two ways: 1) all Responder applications need to validate the transaction 
or 2) k out of N Responders must verify the transaction; otherwise, the operation would be rejected. 
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Figure 12 describes how IL generally performs a cross-ledger operation in the one-on-one mode. To start 
this process, the IL core invokes the listen_for_events function on the Initiator adapter (step 1) where 
the InterledgerEventSending events from an Initiator application are being filtered (step 2). Upon 
reception of the event, the Initiator adapter invokes the send_transfer function from the IL core (step 3). 
This function generates a random number (i.e., called nonce) which is used to map the original id 
parameter to the ongoing transaction. Next, it passes the nonce and the data parameter to the 
Responder adapter by calling the send_data function (step 4). Additionally, at this stage of the operation, 
the IL core creates a state object where all transaction-specific information would be stored. As a 
following step, the Responder adapter invokes the interledgerReceive function from the Responder 
application (step 5). On the Responder ledger, the status of the transaction is sent back via either the 
InterledgerEventAccepted event or InterledgerEventRejected event (step 6). The Responder adapter then 
calls the process_result function (step 7) for transferring the transaction status to the IL core where the 
nonce is mapped to the id parameter used by the Initiator application. After that, the IL core depending 
on the transaction status invokes either commit_sending or abort_sending function from the Initiator 
adapter (step 8). The whole operation would be concluded by invoking either the InterledgerCommit or 
InterledgerAbort from the Initiator application (step 9). 

 

Figure 12: One-to-one mode of the Interledger component [46]. 

As shown in Figure 13, for the multi-ledger mode the steps related to the Initiator pipeline (i.e., 1-2 and 
12-13) are identical to the one-to-one mode, however, the Responder pipeline is handled differently in 
this mode. In detail, the multi-ledger mode employs a two-phase commit approach where the 
transaction would be only committed if a certain number of Responder applications accepts the 
transaction. To this end, the IL core invokes the send_data_inquire function on all Responder adapters 
(step 4) which results in calling the interledgerInquire function of respective Responder ledger SCs (step 
5). Upon reception of replies from Responder applications, which would be in form of either an 
InterledgerInquiryAccepted or an InterledgerInquiryRejected event (step 6), the adapters invoke the 
core’s transfer_inquiry function (step 7). Once a sufficient number of Responder adapters delivers the 
replies to the IL core, it will then call either send_data or abort_send_data function for committing or 
aborting the transaction respectively (step 8).  
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Figure 13: Multi-ledger mode of Interledger component [46]. 

These function calls result in invocation of either the InterledgerReceive or the InterledgerReceiveAbort 
function on the Responder application SCs (step 9). The Responder ledgers report the status of the 
transactions to the adapters via either InterledgerEventAccepted or InterledgerEventRejected events. 
Next, the adapters forward the results to the IL core through the process_result function calls (step 11). 
Finally, the transaction is concluded on the Initiator side in a similar manner to the one-to-one mode. It 
is worthy to mention that the current IL component only implement the one-to-one mode, however, the 
implementation of the multi-ledger is in progress. 
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Figure 14: The class diagram of the IL component [46]. 

Figure 14 presents the class diagram of the IL component. As stated before, IL supports different ledger 
types; therefore, it defines abstract APIs that later could be implemented for each type of ledger. For 
better understanding, the Quorum Initiator and Responder classes are demonstrated as an example in 
Figure 14. 
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Figure 15: Architecture of Decentralised Interledger [46]. 

A Decentralised Interledger (DIL) approach where a number of nodes are simultaneously offering 
Interledger services is envisioned for future releases. In the DIL design, every party runs one or more IL 
component where all members share the identical state information. Consequently, in this approach the 
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applications and their users must trust the group of IL nodes rather than a single node, which also leads 
to higher degree of reliability and availability. Despite several changes required by the DIL solution to 
the internal structure of the IL component, the IL interfaces, which are currently used by the applications, 
would remain the same. 

As Figure 15 depicts the fact that the DIL architecture shares a lot of similarities with basic IL (i.e., run on 
a single node). The necessary functionalities for DIL solution will be implemented in the IL core while the 
ledger-specific adapters and application interfaces will remain intact. Unlike the basic IL where the IL 
core on a single node is responsible for forwarding all transactions to the target ledger-specific adapters, 
in the DIL architecture a consortium of nodes is handling all transactions. To this end, the IL core of every 
node stores the related transaction-specific information into the shared state, which is accessible by all 
nodes. Next, using a deterministic algorithm a pseudo-random node from the consortium is selected to 
proceed with the transaction in parallel with the standby nodes, which provide higher degree of 
redundancy by tracking the target ledgers. 

Figure 15 in addition to the DIL architecture demonstrates the workflow of DIL protocol. According to 
this figure, all nodes supporting the related ledger type listen for events from the Initiator application 
(step 1) and upon reception of an event either create an entry in the shared state or examine the 
correctness of the state information (step 2). The IL state management assigns different roles (i.e., either 
active or standby) to each node in the consortium based upon a deterministic algorithm. According to 
these roles, the active node is supposed to continue with passing the transaction to the Responder 
application whereas the backup nodes are only responsible for monitoring the whole process. The active 
node notifies the IL state management about the acceptance of the role before proceeding with the 
operation since passing the information to Responder ledgers may take a long time especially in the 
multi-ledger mode (step 4). After that, the chosen node performs Responder operation (steps 5-6, for 
sake of simplicity, Figure 15 only represents the one-to-one mode) and write the outcome of the 
operation to the shared state (step 7). In case of time out in step 4 or 7, the first backup node will replace 
the active node and repeats the step 4-7. On the Initiator side, the validator node is selected using the 
same algorithm as in step 3 (step 8) and passes the transaction outcome to the Initiator application (step 
9). Unlike the Responder operation, the Initiator operation is relatively fast and thus the validator node 
does not require writing an additional acceptance notification to the IL state management. The whole 
operation will be concluded by updating the shared state (steps 10-11). In a similar manner to step 4 and 
7, if each of final steps (10-11) times out, the first standby node will take over the operation.  
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5. Initial communication platform 
This chapter provides an overview of the PHOENIX Secure and Persistent Communications Layer, and 
describes its interactions with the Universal Secure Gateway, the Interledger Solution, and the Privacy 
Protection Enforcement (PPE) Smart Contract Management. 

The SPC Layer adopts a data-centric approach based on federated DLTs to achieve a higher degree of 
persistency, traceability, availability, integrity, and interoperability in the context of data 
communications.  The SPC Layer leverages the use of the Interledger component that facilitates the 
integration of multiple legers, resulting in cohesive storage platform where different types of ledgers can 
be used simultaneously. This component can be used for either transferring data among different 
ledgers, storing data hashes, or exchanging digital assets. A detailed description of the Interledger 
component is provided in Chapter 3.2.   

Moreover, the SPC Layer deploys a TAXII server that aims to handle CTI exchange from PHOENIX 
components generating CTI towards the DLT of the SPC Layer. This will provide secure federated 
communications among LSP level PHOENIX components as well as between those components and the 
I2SP Platform. More information about the TAXII Server, TAXII Client Implementation are given in 
Chapter 2.  The SPC also leverages the use of the Universal Secure Gateway that has Cyber Threat 
Intelligence features. Indeed, this component might be able to detect anomalies in the network 
communications. It can communicate them to the central component of the Phoenix system responsible 
for collecting and sharing Cyber Threat Intelligence (TAXII Server).  An example of interactions of the SPC 
Layer with TAXII clients such as SAPC, IMEC and the USG are depicted in Figure 16.  

The service mesh will also strengthen the security by design approach of the project. For many years, 
the energy related infrastructure has been more traditional, cloud native communications can be 
leveraged since it is beyond standard approaches. A brief background on the Cloud Native Application is 
provided in Chapter 3.  

 

Figure 16: Example of Interactions of the SPC Layer with the TAXII clients. 
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5.1. Collecting data from USG  
Since legacy EPES devices do not support the security and data persistency functionalities as defined in 
PHOENIX project, an interface device between the legacy EPES is needed. Such a device would be 
universal, secure and act as a gateway between the legacy EPES and the PHOENIX framework. Thus, the 
name: Universal Secure Gateway (USG), shown as “USG” in Figure 17. 

 

Figure 17: USG positioning in the SPC Layer. 

USG hosts several CTI features, e.g., anomaly detection on the communication network. USG monitors 
the traffic on the various communication channels and based on the provided detection algorithms 
identifies the anomalies or attacks and communicates them to the central TAXII server, which is 
responsible for collecting and sharing CTI.  

USG can serve as secure communication link between the spatially distributed legacy devices to provide 
secure data communication in case they do not support that feature yet.  

A detailed description of the USG has been provided in D2.5: Universal Secure Gateway (Ver. 1) [47] and 
will be updated in D2.6: Universal Secure Gateway (Ver. 2). 

5.2. Interactions with Interledger solution  
In PHOENIX platform where a large amount of CTI data is generated and exchanged, DLTs are mainly 
used to establish agreements between different components in terms of compliance rules and 
governance policies for data exchange. Additionally, they significantly improve the integrity of data 
communication within the SPC Layer since the TAXII server stores the hash of each posted STIX object in 
SPC’s ledger and later uses the hash to validate the correctness of STIX records maintained by the TAXII 
server. Therefore, DLTs enable the PHOENIX platform to achieve a higher degree of traceability, 
availability, integrity, and interoperability in the context of data communications. 



H2020–832989: PHOENIX 

Deliverable D2.3: Secure and Persistent Communications Layer (Ver. 1) 

Page 37 of 55 

 

Figure 18: An example scenario of usage of the IL component within SPC Layer. 

For demonstrating the Interledger protocol, which is implemented by the IL component, we consider a 
scenario where SPC Layer internally utilizes two types of ledger (i.e., Quorum and Hyperledger Fabric) 
for persisting incoming CTI. More specifically, as described in chapter 2, the TAXII server upon reception 
of any STIX objects (step 1) including detected attacks, anomaly reports and proposed countermeasures, 
apart from persisting them in the MongoDB database, stores the hash of the object in SPC’s DLTs for 
improving the data integrity. Figure 18 depicts an example scenario of this operation where the TAXII 
server is connected to Quorum ledger via TAXII-to-Quorum adapter. As shown Figure 18, the TAXII server 
using the adapter triggers a transaction carrying the hash of the STIX object on the Quorum ledger (step 
2). Next, the Quorum node which is running the smart contract implementing the sender interface, emits 
an InterledgerEventSending event (step 3). The event carries the id parameter and data payload which 
is the hash of the STIX object. When the IL component catches the emitted event, extract the related 
information (i.e., the hash object) and passes it to the Hyperledger Fabric ledger by calling the 
InterledgerReceive function from the configured Responder application chaincode (step 4). The 
Responder application then sends back the transaction status on the Hyperledger Fabric ledger by 
emitting either of following events: 1) InterledgerEventAccepted that indicates the hash object is 
successfully written in Fabric ledger or 2) InterledgerEventRejected which shows that the data transfer 
triggered by the Quorum ledger is failed for any arbitrary reasons (e.g., network failure) (step 5). The IL 
component, depending on the state of transaction, then calls either InterledgerCommit or 
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InterledgerAbort function from the Initiator application SC to conclude the cross-ledger operation (step 
6).  

In the described scenario, the IL component can still handle a cross-ledger operation even if the roles of 
Quorum and Hyperledger Fabric ledger would be switched, meaning that the Hyperledger Fabric ledger 
acts as a primary SPC’s ledger which is directly connected to the TAXII server via the TAXII-to-Fabric 
adapter while the Quorum network plays the role of secondary ledger. 

5.3. Smart Contract Management and Interactions with PPE 
PHOENIX Components will interact with the blockchain by creating and storing transactions through the 
usage of SCs. In GoQuorum [48], SCs are pieces of code written in Solidity language [49]. SCs can be 
invoked both from outside the blockchain and by other SCs depending by their visibility.  

The Privacy Protection Enforcement (PPE) Component, as described in D2.1 [1], allows personal data 
management in compliance with the PRESS Framework [50]. It will be composed by two main 
subcomponents: 

● PPE-Core: A standalone component that will be able to detect events, manage consent and 
permissions required by systems’ participants, take track of those requests, and notify other 
components according to specific rules. 

● PPE-SmartContracts: A set of smart contracts that will expose functionalities through which 
other SCs and PHOENIX Components will be able to access PPE features. 

The deployment diagram presented in Figure 19 helps to understand how PPE component will be 
physically deployed on the PHOENIX system.  

 

Figure 19: PPE Deployment Diagram. 

PPE-SmartContracts will be deployed on the GoQuorum blockchain and the PPE component will interact 
with them in order to provide the following macro functionalities: 
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• Consent Management, 

• Permission Management, 

• Data Access Tracking, 

• Notification. 

PPE-SmartContracts development will end up with three main artefacts: 

• PRIMULA-SCs: A set of smart contracts for consents management. 

• CoreDEX-SCs: A set of smart contracts for permissions management. 

• PPE-lib: A shared library between PRIMULA-SCs and CoreDEX-SCs. 

The first two artefacts will be developed in such a way that they will be accessible also through other SCs 
and by the outside of the blockchain, whereas the PPE-lib will be maintained private and so not 
accessible from other SCs or PHOENIX Components.  

PPE Smart Contracts will emit solidity events. PPE events will store arguments passed in the transaction 
logs. These kinds of events will be accessible using address of the contract that generates them. This kind 
of events will contain information like consents and permissions grant/revoke or other PPE-specific data.  

For the sake of clarity, further details on data model and PPE specifications will be available on D4.3 
“Cross-GDPR sensitive data exchange toolbox” (planned delivery on M22 – June 2021); however, a first 
draft of the class diagram with involved entities and associated methods is presented in Figure 20. As 
can be inferred from the diagram, there will be four main entities: 

• Data: this object is created when a data registration request is received by PPE. It contains data 
metadata. 

• Consent: represents the status of the consent assigned from the data owner to the processing of 
specific data. 

• Permission: when a new data exchange request is received, PPE is responsible to agree/disagree 
on that data exchange. 

• Log: every time data is accessed, this information will be logged inside the blockchain. 
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Figure 20: PPE Class Diagram. 
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6. Resilience Enhancement Methodology 
To increase the resilience of the cyber-physical power system, we proposed the Resilience Enhancement 
Methodology (REM) as described in D2.2 [3]. It ensures the availability of automation functions using an 
implementation based on the Double Virtualization (DV) approach, opposed to the implementation in 
dedicated devices as in traditional automation systems. A use case related to LSP1 is defined and 
described in this chapter, followed by an overview of the concept of the proposed REM. Finally, a 
description of the design and implementation of the REM is provided. 

6.1. Use case 
Automation systems in electrical grids provide many functionalities required for the reliable and safe 
operation of the infrastructure, both under normal and under fault conditions. We chose Fault 
Localization, Isolation and Service Restoration (FLISR) as an example in this use case, which is a 
fundamental functionality to ensure reliable grid operation.  Although distribution systems are often 
meshed, under normal operating conditions they are operated in a radial configuration, which is 
established by a corresponding configuration of switches. However, in case of faults in the electrical grid, 
the network can be reconfigured, and lost loads can be resupplied. The reconfiguration requires a 
localization of the fault, and the identification of a suitable reconfiguration scheme to resupply lost loads, 
which is composed of a sequence of switching actions. Finally, the sequence is sent to remote-controlled 
switches in the grid, which are switched on or off. 

FLISR is one of the critical functionalities provided by the automation system under fault conditions, i.e., 
under conditions, where the affected power system is even more vulnerable to any additional 
disturbances. Attackers exploiting this condition to launch a cyber-attack on this functionality (or 
launching a coordinated cyber-physical attack on the infrastructure) could achieve a more severe 
disruption of the grid operation compared to a cyber-attack’s impact under normal conditions. 

The proposed REM uses the DV approach to ensure the availability of FLISR: 

• In case of faults in the electrical grid and potential failures of devices in the automation system, 
virtualized functions can be redeployed in available devices. 

• In case of event detections indicating cyberattacks, devices or DV Assets that may be corrupted 
can be switched off and virtualized functions can be redeployed in available devices. 

6.1.1. Relation to ASM threat scenarios 
The use case deployed in the context of this task is related to threat scenario ASM_SCADA_RTU, as 
described in D1.2: EPES threat modelling & analysis of new threats [51]. A compromise of the Supervisory 
Control and Data Acquisition (SCADA) system would enable an attacker to compromise or disable the 
FLISR functionality in this scenario. REM intends to mitigate this threat by applying DV and deploying the 
virtualized functions on a cluster of devices. Even if one of these is devices is then compromised, the DV 
approach allows for shutting down a compromised device upon detection. 
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6.2. Design and implementation of the Resilience Enhancement 
Methodology 

The REM implementation includes two main parts: functions and data layer, which are specific to the 
use case; and DV, which offers the framework for virtualization and distribution of the relevant functions. 
This section describes the exemplary design and implementation for the use case described in section 
6.1. 

6.2.1. Functions 
Fault Detection and Localization and Service Restoration are the relevant functions for the defined use 
case. The respective functionalities are explained in this section. 

Fault Detection and Localization 
Today’s society relies on electrical energy more than ever before and expects uninterrupted supply. 
Given that up to 80% of all outages in distribution networks are consequence of faults or short circuits 
(due to equipment malfunction, weather conditions, animal contact, poor vegetation management etc.) 
a prompt fault localization is of paramount importance for electrical utilities. To achieve this 
functionality, Fault detection and Localization Algorithm (FLA) will be implemented in the context of 
PHOENIX project. The operation of FLA is based on the compensation theorem from circuit theory and 
is presented in more detail in the following subchapter. Such localization of the fault can help to expedite 
the repair of faulty components and significantly accelerate the power restoration process since the 
repair crew does no longer need to manually investigate the line or rely on reports from offline 
customers to localize the fault. In turn, this can help the Distribution System Operator (DSO) to minimize 
the number of affected customers, with isolation of the faulted area, and consequently improve the 
power quality indices such as System Average Interruption Duration Index (SAIDI) and System Average 
Interruption Frequency Index (SAIFI). Furthermore, since the FLA is also capable of detecting and 
localizing faults that are of temporary nature, the DSO can also investigate those in more detail. The 
granular measurements from Phasor Measurement Units (PMU) provide enhanced insight into the fault 
conditions and fault type. This is important since the temporary faults usually pass unnoticed whereas 
now the DSO can check the location of such faults and potentially identify malfunctioning equipment 
(due to poor insulation for instance) and with predictive maintenance even avoid potentially enduring 
faults in the future.  

The goal of the method is to estimate the location of events in Distribution Networks (DN) with as little 
as two PMUs, utilizing compensation theorem from circuit theory. Measurements of networks’ pre-
event and post-event steady state synchro-phasors are used alongside known load profiles, network 
topology and line parameters to calculate voltages at every bus as seen from each PMU. These two sets 
of voltages are then compared and the bus where the difference is minimal is identified as a source of 
the event. 

Optimal observability of the feeder using just two PMUs is achieved when one of them is installed at the 
beginning of the main feeder (primary substation) and the other one is placed at the end of the feeder 
(secondary substation). However, it is worth pointing out that in configuration with just two installed 
PMUs only the faults on the main feeder can be correctly identified and localized. When a fault occurs 
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on a branch that is not a part of the main feeder, the bus, from which the lateral stems off, will be 
identified as faulted instead. In DNs such localization is usually sufficient, since laterals are generally 
short, and the exact localization does not help reduce the fault mitigation time significantly. 
Nevertheless, if more precise localization would be needed, one could achieve it with the introduction 
of PMUs at the laterals’ ends. Extension of the method for the case with an arbitrary number of PMUs is 
presented in [36]. 

To summarize, the main features relevant for the implementation of FLA on the proposed framework 
are: 

• Synchro-phasor measurements of voltages and currents acquired from as little as two PMUs are 
sufficient for localizing the fault on the main feeder. 

• Model-driven method, meaning that topology and parameters of lines are assumed to be known. 

• The rest of the information collected from the feeder, such as load consumption, can be in the 
form of pseudo measurements from either Power Quality Meters (PQMs) or Smart Meters (SMs). 
The term pseudo-measurement is used for those devices to emphasize their lower reporting rate 
compared to the PMU and to highlight that the measurements of PQM and SM are not as 
precisely time-stamped as in the case of PMU.  

Service Restoration 
The occurrences of natural disasters and targeted attacks on the distribution grids have caused large 
scale outages. Making DNs more resilient enables them to withstand and recover from these High Impact 
Low Probability (HILP) events and ensures continuous supply of power to the end customers. An HILP 
event introduces severe and rapidly changing circumstances, causing multiple outages in the network 
and creating large de-energized sections [52]. Furthermore, DNs need to be designed to be resilient not 
only to regular single faults but also against multiple faults.  This can be achieved by implementing an 
efficient and fast Service Restoration (SR) scheme for HILP events.  

A typical SR scheme for DNs, after successful fault detection and isolation, should be able to perform the 
following. 

1) Restore as many out-of-service customers as possible in a minimum time, by providing a sequence 
of operation to the switches. Tele-controlled switches should be preferred in the re-powering 
process to reduce the restoration time.   

2) Consider the priority of the loads and restore the most crucial customers (hospitals, cellular base 
stations, the gas network facilities, and other critical infrastructures) first. 

3) Preserve radiality of the grid with every switching operation prescribed in the sequence. 
4) Maintain the voltage of the grid as per the limits imposed in the grid codes of the specific country. 
5) Satisfy loading constraints of the lines and substation loading. 

One of the major challenges in designing a service restoration scheme to cope with the HILP events is 
that, in addition to the aforementioned attributes, the SR scheme should also react to rapidly changing 
system conditions. It should be able to consider, in real time, the uncertainties in the power generation 
and load demand to avoid a possible network congestion while restoring the grid. Furthermore, it should 
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adapt to changes in the network topology as subsequent multiple faults may occur due to the 
propagation of the HILP events. We have chosen the rule-based SR approach proposed in [53] for the 
implementation in REM. 

The proposed method uses graph theory to find the optimal restoration path and provides a sequential 
restoration scheme prioritizing the re-powering of critical loads. It also takes into account the volatility 
of the power generation and consumption, to better understand the current loading conditions of the 
grid while defining the SR sequence. This is achieved by utilizing a state estimation algorithm to quantify 
the congestion of the grid and power losses, leveraging on the incorporation of real time measurements 
coming from the field devices or forecasts. Enabling the SR to react to latest grid loading conditions and 
sudden events contributes to the real time applicability. 

6.2.1. Double Virtualization 
DV has been proposed in the H2020 SUCCESS (https://success-energy.eu/) project to provide resilience 
by design to monitoring and control systems to mitigate both failures and targeted attacks [54] and has 
been refined in the context of subsequent research projects [55]. The DV approach leverages on the 
availability of Intelligent Electronic Devices (IED), which are used to monitor and control EPES 
infrastructures. In traditional systems, functions are implemented in dedicated devices, and the 
respective functionality is lost if the corresponding device fails due to attacks or natural disasters. 
Following the DV approach, function and data layer are virtualized and no longer dedicated to a specific 
device. Instead, functions can be re-allocated between all available devices. An example is provided 
below, considering the functionality of State Estimation (SE). SE calculates the estimated system state 
based on all available PMU measurements and their uncertainties. For this, synchrophasors from PMUs 
are sent to Phasor Data Concentrators (PDC) and then forwarded to the control centre where the SE is 
performed (see Figure 21). 

 

Figure 21: DV use case example - grid monitoring based on PMU measurements. 
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In case of a PDC failure, all measurements from the corresponding PMUs would be lost, as shown in 
Figure 22, and the quality of the SE results would decrease accordingly. 

 

Figure 22: DV use case example - PDC failure without DV. 

Following the DV approach, the PDC’s function (collecting phasors from PMUs and forwarding them to 
the control centre) is virtualized and can be re-allocated between each of the available devices. In case 
of a PDC failure, the corresponding PMU measurements are collected by a different PDC and the 
availability of synchrophasors for the SE is ensured (see Figure 23)  

 

Figure 23: DV use case example - PDC failure with DV. 
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The aforementioned example (and other potential applications of DV) requires a meshed network of 
intelligent devices as the PDCs that are collectively responsible for operation of the grid. Without 
redundant devices for hosting the automation functions, the benefits of DV cannot be realised. From the 
example, the following prerequisites are identified for potential DV applications: 

• DV can only be applied to increase the resilience of EPES automation systems whose operational 
intelligence is hosted by multiple devices. 

• The control and monitoring algorithms (automation functions) should be virtualized and 
deployed as either executables or automated scripts so that they can be migrated or re-
instantiated in different devices. 

Design approach to Double Virtualization 
DV can be conceptualized as an approach to the Observe-Orient-Decide-Act (OODA) pattern, first 
introduced by John Boyd [56]. By using this pattern, the intent is to enable DV entities to react 
preventively to potentially harmful situations by anticipating them through observation.  

 

Figure 24: Simplified OODA Diagram 

The steps of the OODA loop are mapped to DV tasks as follows: 

• Observe: In this step, internal or external sensors collect information about the state of DV 
entities. 

• Orient: DV incorporates interpreters for the collected data to contextualize it. 

• Decide: Based on the collected and interpreted data, specific algorithms identify suitable actions 
(e.g., migration or re-instantiation of virtualized functions). 

• Act: The mitigation actions identified in the previous step are applied. 

Observe

Orient

Decide

Act
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Implementation of Double Virtualization 
SUCCESS relied on Calvin1 for the implementation of DV. However, Calvin did not maintain an active 
community and has been discontinued. For that reason, Node-RED2 will be used instead of Calvin for the 
DV implementation in PHOENIX. 

Node-RED is an Integrated Development Environment (IDE) and execution engine focusing on IoT 
applications. It provides a runtime based on Node.js, where programs are implemented as sets of nodes, 
which are wired together and form flows. Node-RED has an active community and offers many 
customized nodes e.g., to provide communication interfaces, integration of databases and execution of 
external scripts. Finally, Node-RED can be used across several operating systems and architectures, 
turning it into an excellent tool to be used in heterogeneous systems. 

Node-RED facilitates the virtualization of functions, either by graphically and easily creating flows that 
perform the required logic (embedded on the Node-RED application) or, by enabling the execution of 
several types of scripts (Bash, Python, etc.) while keeping them monitored and controlled. 

For the initial REM implementation, we use the DV implementation presented in [55] as a starting point. 
The aforementioned DV implementation is based on two types of components: 

• DV Administration and Management (DVA&M): The DVA&M is responsible for the coordination 
and management of all available DV Assets and the deployment virtualized functions on them. 
DVA&M is a centralized component, deployed on a dedicated device. 

• DV Asset: Each DV Asset corresponds to a physical device, which is running a Node-RED runtime, 
enabling the DVA&M to deploy virtualized functions as Node-RED flows. 

While this implementation utilizes the redundancy of the set of DV Assets to eliminate the single point 
of failure of deploying functions on dedicated devices, it creates another single point of failure in form 
of the DVA&M. Further refinements are planned for the final implementation. One of these refinements 
will include distributing the DVA&M functionality to eliminate the single point of failure. 

6.2.2. Implementation of the Resilience Enhancement Methodology 
For the implementation of REM, the DV framework is provided by one DVA&M and at least one DV Asset. 
The DVA&M is responsible for administration and monitoring of the DV Assets and is configured 
according to the available DV Assets. 

For the DV Assets, different flows are defined as described in Table 2. The “Interface and storage” flow 
is deployed on each DV Asset, receives data from the DVA&M and stores it in a local database. All other 
flows are normally running on one of the available DV Assets. The respective flow calls and monitors a 
Python script, which runs continuously. Additionally, the flow receives the output of the scripts, which 

 

1 https://github.com/EricssonResearch/calvin-base 
2 https://nodered.org/ 
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are the location of the fault or the switching sequence for network reconfiguration here. These outputs 
are then forwarded to the DVA&M. 

Table 2: DV Asset - overview of relevant flows 

Flow Description Deployment 

Interface and storage Receives data from DVA&M stores it in the 
local database 

On each DV Asset 

Fault localization Calls and monitors a local Python script for 
fault localization, receives results and 
forwards them to DVA&M 

On one DV Asset 

Service Restoration Calls and monitors a local Python script for 
Service Restoration, receives results and 
forwards them to DVA&M 

On one DV Asset 

 

6.3. Outlook 
As explained earlier, a shortcoming of the current DV implementation is the DVA&M, which is a 
centralized component, deployed on a dedicated device and thus acts as a single point of failure. This 
shortcoming can be overcome by distributing the DVA&M functionality in the DV Assets with the help of 
a consensus mechanism to enable coordination between all DV Assets. 

An update on the proposed REM and the implementation will be provided in D2.4, including the 
distributed DVA&M. 
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7. Simulation Studies 
This chapter introduces the laboratory set-up used for the implementation and evaluation of REM and 
presents our approach to the evaluation. Furthermore, we give an outlook on planned improvements 
and refinements of the implementation. 

7.1. Laboratory set-up 
The laboratory set-up comprises two main parts: 

1. A model of the electrical grid, for which the REM approach is utilized; and 
2. the REM infrastructure, including DV and relevant monitoring and control functions. 

7.1.1. Grid model  
The considered distribution network is 23.9 kV, 3-phase, ungrounded, meshed network located in Italy 
and operated by ASM Terni, which is part of LSP1. The network is composed of both underground cables 
and overhead lines, and includes loads and RES, specifically photovoltaic units. 

The proposed FLISR methodology will be tested in the simulation environment using the Real-Time 
Digital Simulator (RTDS), which currently offers the closest approximations to the conditions in real-life 
grids. The meshed network is effectively divided into four independent radial sub-networks with the help 
of breakers.  

Due to computational limitations of the simulator some simplifications of the network are required. 
Therefore, the loads are aggregated with the consumption equal to sum of all corresponding loads in the 
real grid. Loads are ungrounded and connected in symmetrical ∆-connection with assumption of 
constant impedance. The lines are modelled with equivalent 𝜋-sections, which is the common approach 
for distribution networks. The upstream of the grid is presented with a stiff power-sources, whereas the 
Renewable Energy Sources (RES) are modelled as constant current sources. 

7.1.2. REM infrastructure 
The REM infrastructure comprises the software components described in section 6.2 and the hardware, 
on which these components are deployed. We are using single board computers for the deployment of 
the software components, as described in Table 3. 

Table 3: Specification of single board computers for REM deployment. 

Model Raspberry Pi Model 4B 

CPU Quad-core Cortex-A72 (ARM v8) 

RAM 8GB LPDDR4-3200 SDRAM 

Storage 32GB SD card 

 



H2020–832989: PHOENIX 

Deliverable D2.3: Secure and Persistent Communications Layer (Ver. 1) 

Page 50 of 55 

In the current set-up, three single board computers are used, one as DVA&M, and two as DV Assets. The 
DVA&M also acts as an interface between the RTDS simulation and the DV Assets, as shown in Figure 25. 
The blue boxes represent the single board computers, where only one of the DV assets is shown here. 
Each of them runs a Node-RED runtime containing several flows. One set of flows, both in the DVA&M 
and DV Asset, is responsible for the administration and management of the DV infrastructure. This 
includes registration and monitoring of the DV Assets and migration of functions between DV Assets. 
The dashed arrows between these flows represent the communication required for administration and 
management. The solid arrows represent process data flows, in this case simulation data from RTDS and 
control commands to RTDS. A dedicated flow is set up in the DVA&M for forwarding the data to all DV 
Assets, where it is received and stored in a database. Each function is implemented as a separate flow 
and a corresponding Python script, where the flow starts and controls the Python script (indicated by 
dashed arrow). The script directly receives data from the database, results are written in the database 
and/or sent to the corresponding Node-RED flow. Finally, the results are sent to RTDS via the flow in the 
DVA&M. 

 

Figure 25: Simplified REM infrastructure and laboratory set-up. 

7.2. Evaluation 
This section presents the approach to the evaluation of the proposed REM implementation. The final 
results based on the proposed evaluation criteria will be included in D2.4. 
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7.2.1. Scenario 
As an initial evaluation scenario, we assume a fault occurring in one of the feeders. The fault is happening 
close to the beginning of the feeder; thus, all downstream loads are disconnected. Additionally, we 
assume one of the DV Assets is located and supplied by the feeder affected by the fault. As soon as the 
fault occurs, the DV Asset fails since it is no longer powered.  

7.2.2. Criteria 
To evaluate the performance of the proposed REM implementation, we will use the criteria given in 
Table 4.  

Table 4: Criteria for evaluation on the REM implementation 

Criterion Description 

Functionality 
maintained 

The FLA and SR functionality are maintained; the location of the fault is identified 
correctly, and the reconnectable loads and DV Assets are resupplied 

Time to restore 
functionality 

The time difference between failure of a DV Asset and redeployment of its active 
flows in a different DV Asset 

 

In addition to these criteria, we provide a qualitative evaluation of the implementation based on the 
requirements defined in D2.2 [3], discussing current shortcomings and potential improvements. 
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8. Conclusion  
This deliverable provided the update on the Secure and Persistent Communications Layer in PHOENIX. 
An overview of the initial communication platform was given, including the SPC Layer description and its 
interaction with other key components as the USG, the Interledger solution and the PPE. To increase the 
availability and reliability of the PHOENIX core components and foster communications resilience, the 
platform deployment of PHOENIX follows the cloud native paradigm with the adoption of container-
based operation and relevant container orchestration processes. 

PHOENIX relies on TAXII and STIX to exchange CTI information, with a TAXII server deployed at LSP level 
as part of the SPC Layer. The exchange of CTI is realized by a publish/subscribe mechanism between the 
TAXII server, and the clients implemented in the other components of the PHOENIX platform. The USG 
is one of these components, deployed at LSP level to provide cyber-attack detection capability (among 
other functionalities) with STIX-formatted CTI as output. 

For the persistent and immutable storage of this CTI, DLTs are utilized. The proposed DLT-based 
Interledger solution improves traceability, availability, integrity, and interoperability of the data 
exchange. Communication between various ledgers can be realized with the current implementation of 
the Interledger solution while additional ledgers can be integrated. This enables the CTI exchange 
between different EPES infrastructures while maintaining inclusiveness to different ledgers. 

Additionally, we have investigated “by-design” measures to increase EPES resilience and proposed the 
Resilience Enhancement Methodology for that purpose, by exploiting existing redundancies (in the 
physical infrastructure) and creating additional redundancy via virtualization (in the automation and 
control system). The current implementation, a relevant use case and an outlook to further 
improvements of the implementation have been provided. The approach to the evaluation and the 
corresponding laboratory set-up have been described. 

The presented solutions are work in progress and the final results will be given in the last iteration of the 
SPC Layer deliverables, which is D2.4: Secure and Persistent Communications Layer (Ver. 2).  
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