For more details contact:

Ghasan Bhatti
Project Coordinator
Capgemini Technology Services, France
ghasan.bhatti@capgemini.com

PHOENIX Admin Team
phoenix-info.fr@capgemini.com

Join Us

@H2020Phoenix
company/phoenix-h2020/
https://phoenix-h2020.eu/

EU H2020
Electrical Power System's Shield against complex incidents and extensive cyber and privacy attacks

The project has received funding from the European Union’s Horizon 2020 research and Innovation programme under grant agreement N°832989. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.
PHOENIX Objectives

- **Strengthen EPES cybersecurity preparedness** by employing
 a) “security by design” via novel protective concepts for resilience, self-healing and accountability,
 b) “security by innovation” via adapting, upgrading, integrating and validating a number of TRL5 developments to TRL7-8.
- **Coordinate EPES cyber incident discovery, response and recovery**, contributing to the implementation of the NIS Directive by developing and validating at national and pan-European level, a novel fully decentralized near real-time synchronized information awareness exchange platform, among authorized utilities, CSIRTs, ISACs, CERTs, NRAs and the strategic NIS cooperation group.
- **Accelerate research and innovation in EPES cybersecurity** by a novel prevent, detect and mitigate DevSecOps mechanism, secure and privacy preserving federated Machine Learning (ML) algorithms and definition of certification methodologies and procedures.

Concept and Methodology

<table>
<thead>
<tr>
<th>Generation/RES</th>
<th>Utilities</th>
<th>TSOs</th>
<th>DSOs</th>
<th>End-users</th>
<th>Manufactures</th>
<th>Technology Providers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Today's Legacy EPES</td>
<td>Existing pre-products & running projects</td>
<td>Large Scale Pilots</td>
<td>Resilience by design</td>
<td>Survivability by design</td>
<td>Self-healing by design</td>
<td>Privacy by design</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Continuous DevSecOps Approach</td>
<td>Universal Secure Gateway for legacy EPES</td>
<td>Data Centric Secure & Persistent communications</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GPU assisted ML offline/online framework</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Privacy Preserving, secure federated ML Training</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cooperative, fully distributed I2SP platform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cybersecurity Certification Centre & methodologies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EU Directives</td>
<td>ENISA/CERTS</td>
</tr>
</tbody>
</table>

- PHOENIX implements innovative technological solutions such as **Universal Secure Gateway (USG), Secure & Persistent Communications (SPC)**, utilizing blockchains, inter-DLTs and SDN/5G technologies
- **Situation Awareness & Early-Stage Detection** is achieved via a **GPU assisted ML framework and privacy preserving, secure federated ML training**, which protect sensitive and confidential training data sets

PHOENIX Architecture

- **Secure and Persistent Communication Layer (SPC)** for federated and traceable EPES information exchange
- **EPES Awareness and Enforcement enabling Situation Awareness, Perception and Comprehension (SAPC)**, Incidents Mitigation & Enforcement Countermeasures (IMEC) and Privacy Protection Enforcement (PPE)
- **Pan-European EPES Incidents Information Sharing Platform (I2SP)** as a fully distributed information sharing system, operating as a crowdsourced cyberthreat analysis platform.

Laboratory Testing and Evaluation

The PHOENIX platform will be extensively tested at laboratory environment using semi-automatic procedures for stability and efficiency. This will ensure that the PHOENIX components achieve the expected Technology Readiness Level (TRL) upon the platform integration by establishing suitable evaluation procedures, such as STEP (Systematic Test and Evaluation Process) and benchmark criteria.

Real-life Validation through Pilots

PHOENIX will involve real-world scenarios to validate the effectiveness of PHOENIX across five European Large-Scale Pilots (LSPs) in Italy, Germany, Slovenia, Greece and Romania involving the complete end-to-end generation, transmission, distribution & presumption value chain. Beyond the individual LSPs, cascading effects even to other critical infrastructures will be simulated and cross-border security and privacy sites will be tested and validated.